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Note. Most of this talk is taken (in pieces) from ”The Cauchy-Schwarz Master Class” by J.
Michael Steele. The figure is also taken from the book.
Probably the most widely-used (and well-known, and beloved, and other superlative adjective
that one can attach to illustrate how pervasive this little identity is) expression in analysis, the
Cauchy inequality relates the sum of products to product of sums. In the most basic form, it
can be stated as follows:

Theorem 1 (Cauchy inequality, 1821). Given real sequences a1,⋯ , an and b1,⋯ , bn, we have
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This little statement was first published by Cauchy himself and made famous, at least in the
Russian-speaking circles, by his student Bunyakovsky (interestingly, Bunyakovsky never both-
ered to deal with the infinite series, claiming it is an ”obvious” extension of the finite version).
For some reason, this work was not well-known in Western Europe until much later, because
manyy years later in Gottingen, Schwarz independently proved the integral analog of the finite
sum version:

Theorem 2 (Cauchy-Schwarz inequality, 1885). If S ⊆ ℝ2 and f ∶ S → ℝ and g ∶ S → ℝ,
then the double integrals
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This talk does not have an overarching goal, except that it will all be related to the Cauchy
inequality. We will look at an interesting way this expression come to be and obtain inequality
through a useful (but seldom discussed) tool. We will end with the question that will stump
many student: when does the backward inequality hold?
As is customary, we should begin by proving Theorem 1 (Note: for the rest of this talk, we’ll
just concern ourselves with finite real sequences). The proof will be by induction. The case
when n = 1 is not interesting, so we’ll start with n = 2. If one tries to write out (1), one gets
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It is not hard (but a bit annoying) to check the inequality above by expanding both sides.
Another way is to notice that the inequality is a consequence of
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2) = (a1b1 + a2b2)2 + (a1b2 − a2b1)2 (3)
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which is always non-negative. Dropping the first term on the right side of () will give Equa-
tion (1) for n = 2. Avoiding expansion of (2) by introducing () seems pointless. There is (as
always) a better way: with the figure below, use Pythagorean identity

cos2(� + �) + sin2(� + �) = 1

and use sum-of-angle identity to express everything in elementary angles. Substitute the
trigonometeric functions with the corresponding sides’ ratios to get (). This proves the base
case. From here, the induction step is quite simple, so we will leave it to the reader.

Figure 1: THE figure below

Let’s scrutinize again (). We completely ignored the term (a1b2 − a2b1)2 and just used the fact
that it is non-negative. While this gives what we needed, one might ask, howmuch information
did we lose from the castaway term(s)?
It turns out to be an important question, because we want to know howmuch defect is incurred
after each application of (1). To quantify this, we’ll look at the difference of the two sides in
the Cauchy inequality: define the defect Qn as
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which after cancellation will yields
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Note that in the second double sum, the roles of i and j are symmetric. To make the first double
sum looks similar, we can write
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which is the ”castaway term” we saw at the beginning of this discussion. Comparing (4) and
(5), we have what is called Lagrange’s identity:
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A quick application of Lagrange’s identity is to give equality in Theorem 1: we must then have
Qn = 0, so for fixed k and 1 ≤ i ≤ n, we have

aibk = akbi ⇒
ai
bi

= constant for 1 ≤ i ≤ n

So we have just shown that equality in (1) is achieved when a is a multiple of b using this con-
cept of defect. As a matter of fact, we can use similar idea to derive other (finite-dimensional
real) inequalities and their equality cases.
Last, we’ll end with this question: when can (1) go in the other direction? At first glance
this seems hard (just look at ). On the other hand, it is actually not very sharp (compare two
orthogonal vectors, say). To make the question explicit, we’re looking for a constant � > 0 so
that
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Let’s begin with the simplest non-trivial case: with vectors (1, a) and (1, b), when a, b > 0.
Then we’ll compare

(1 + a2)1∕2(1 + b2)1∕2 ≤ �(1 + ab)

Observe: if we keep the product ab constant but letting a → ∞, the left side will diverge while
the right side stays the same. This suggests that we should bound the ratio, so let’s impose the
condition

m ≤
ak
bk

≤M k = 1, 2,⋯ , n

for some 0 ≤ m ≤M <∞.
This is all nice and good, but how can we get � out of this? If we’re to follow our nose, we’ll
try the easy bound
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and expand it to get for all k that
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This is almost it. To relate the product with sum, we’ll need an elementary identity used in the
standard proof of (1): for a, b > 0,
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The result can put in the following statement.

Theorem 3 (Reverse Cauchy inequality). Let ak, bk ≥ 0 for all k = 1,⋯ , n with

0 < m ≤
ak
bk

≤M <∞

Define
A = 1

2
(m +M) G =

√

mM

Then we have
(

n
∑

k=1
a2k

)1∕2 ( n
∑

k=1
b2k

)1∕2

≤ A
G

n
∑

k=1
akbk

4


